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Abstract
We extend the classic Schelling segregation model by replacing its traditional,
rule-based agents with Large Language Model (LLM) agents that make residen-
tial decisions using natural language reasoning grounded in social context. While
LLMs have been incorporated into agent-based models before, to our knowledge
this is the first application that substitutes the mechanical agents of the Schelling
model with LLM-driven agents. We compare LLM agent behavior across five
social contexts: a neutral baseline (red/blue teams), racial (White/Black), ethnic
(Asian/Hispanic), economic (high/low income), and political (liberal/conserva-
tive) scenarios. Our results reveal dramatic differences in segregation patterns
based solely on social framing. Political contexts produce the most extreme segre-
gation (ghetto rate: 61.6, segregation share: 0.928), while economic contexts show
minimal clustering (ghetto rate: 5.0, share: 0.543). Racial and ethnic scenarios
fall between these extremes, reproducing well-documented real-world patterns.
All scenarios differ significantly from baseline (p < 0.001), with political segre-
gation showing 12.3 times higher ghetto formation than economic segregation.
These findings demonstrate that LLMs can capture culturally-embedded pref-
erences and biases, producing segregation dynamics that vary realistically with
social context. This has important implications for using LLM agents to model
social phenomena and test policy interventions.

Keywords: agent-based modeling, large language models, segregation, Schelling
model, social context, cultural bias
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1 Introduction
The model of residential segregation developed by Schelling (Schelling, 1969, 1971,
1978) has been a cornerstone of agent-based modeling (ABM) for over five decades.
demonstrating how mild individual preferences for similar neighbors can lead to
stark residential segregation. Traditional implementations use utility-maximizing
agents that relocate when the proportion of like neighbors falls below a thresh-
old. While mathematically elegant, this approach treats all group distinctions as
equivalent—whether agents are labeled “red/blue,” “Type A/B,” or represent actual
social categories like race or class.

Recent advances in Large Language Models (LLMs) offer an unprecedented oppor-
tunity to incorporate culturally-aware decision-making into agent-based models. LLMs
trained on vast corpora of human text have absorbed cultural knowledge, biases, and
social patterns that reflect real-world dynamics (Park et al., 2023; Argyle et al., 2023).
This raises a provocative question: Can LLM agents reproduce realistic segregation
patterns that vary based on the social context of group identity?

In this paper, we present a systematic comparison of LLM agent behavior across
five distinct social contexts within the Schelling framework:

1. Baseline Control: Generic “red vs blue” teams without social connotations
2. Racial Context: “White middle-class families” vs “Black families”
3. Ethnic Context: “Asian American families” vs “Hispanic/Latino families”
4. Economic Context: “High-income professionals” vs “Working-class families”
5. Political Context: “Liberal households” vs “Conservative households”

Our key research questions are:

• Do LLM agents produce different segregation patterns based on social context?
• Which social contexts lead to the most extreme segregation?
• How do these patterns compare to real-world segregation dynamics?

2 Background and Literature
In Schelling’s model of segregation, sharp spatial divisions can emerge from individuals
making local moves on a grid based on modest preferences for similar neighbors.
Agents typically follow a simple rule: relocate if the proportion of alike neighbors falls
below a specific tolerance. While this model provides an invaluable theoretical basis for
understanding emergent inequality, its simplification of group labels as interchangeable
and its assumption of a common behavioral rule across all social contexts fail to
capture the specific forces that drive sorting in different populations.

A growing body of research extends Schelling along two complementary lines.
Theoretical literature extends the model to account for agents’ socio-economic envi-
ronments and constraints. Vicario, Di Clemente, and Cimini (2024) embed wealth
dynamics and neighborhood externalities into the Schelling framework, showing
that positive feedback between neighborhood “quality” and wealth accumulation
amplifies segregation—while boundedly rational perturbations mitigate it. Bonakdar
and Flache (2023) connect homophily, i.e., preference for having some same-type
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neighbors, to housing markets by allowing prices and relocation to co-evolve with
agents’ education, income, and ethnicity; they find that homophily among richer
households capitalizes into higher prices, whereas a generic “status preference” is insuf-
ficient to generate similar price dynamics. Relatedly, Li and Wang (2020) develop a
probabilistic approach that separates racial from income sorting across multiple neigh-
borhoods, extending two-neighborhood treatments (e.g., Sethi–Somanathan) to show
how income inequality and racial consciousness jointly produce observed patterns.

The empirical literature documents that segregation is heterogeneous across
social lines and places, providing external benchmarks for models. In U.S. cities,
Black–White dissimilarity remains high (e.g., about 59 in 2010), with substantial
regional variation and persistent isolation/exposure patterns for Black and Hispanic
residents (Cutler, Glaeser, and Vigdor 1999; Logan and Stults 2011). Political iden-
tity has also become a salient axis of spatial sorting: residential choices increasingly
reflect partisan affinity and aversion, with measurable geographic clustering of lib-
erals and conservatives (Brown 2021). By contrast, purely economic identities need
not induce comparable enclave formation absent reinforcing institutional or mar-
ket frictions—suggesting that “context matters” for how micro-preferences scale into
macro-segregation.

Empirical research by Logan and Stults [1] and the Othering & Belonging Insti-
tute [2] documents deeply entrenched racial residential segregation across several
U.S. metropolitan areas, particularly in the industrial Midwest and mid-Atlantic
regions. Cities such as Detroit, Cleveland, Milwaukee, Philadelphia, and Trenton con-
sistently rank among the most segregated, exhibiting high Black–White dissimilarity
indices and pronounced disparities in neighborhood-level income, homeownership,
and exposure to poverty. These findings are reinforced by Crowell and Fossett [3],
who demonstrate that segregation is actively reproduced through unequal locational
attainments and structural barriers, rather than being solely a legacy of historical dis-
crimination. Structural mechanisms—including exclusionary zoning, racialized market
dynamics, and unequal returns on socioeconomic resources—continue to perpetuate
these patterns [3]. Segregated communities of color face poverty rates nearly three
times higher than those in segregated White neighborhoods, alongside substantial
gaps in household income and property values [1, 3].

Globally, racial and ethnic residential segregation remains a persistent feature of
urban landscapes, shaped by colonial legacies, migration regimes, and institutional-
ized inequality. In Western Europe, studies have documented pronounced segregation
of immigrant-origin populations, particularly in cities such as Paris, London, and
Stockholm, where ethnic enclaves often coincide with socioeconomic deprivation and
limited upward mobility [4]. Evidence from Canada and Australia suggests similar
patterns, with Indigenous and racialized immigrant communities disproportionately
concentrated in under-resourced neighborhoods [5]. Williams and Collins [6] argue
that residential segregation operates as a fundamental mechanism of structural racism,
influencing access to education, employment, and health outcomes across diverse
national contexts. These findings are reinforced by recent scoping reviews that identify
redlining analogs, exclusionary zoning, and racialized housing markets as transnational
drivers of spatial inequality [7]. Despite differences in legal frameworks and welfare
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regimes, the reproduction of segregation through institutional channels remains a
common thread, underscoring the global relevance of spatial justice in urban policy.

Recent advances in large language models (LLMs) open a third line of work:
replacing hand-coded heuristics with agents that draw on broad cultural priors. LLM-
based multi-agent systems can simulate human-like preferences, social reasoning, and
adaptation when embedded in interactive environments (Park et al. 2023). Moreover,
samples drawn from LLMs can mirror empirical heterogeneity in survey responses
and attitudes, indicating that such models encode culturally specific regularities and
biases learned from text (Argyle et al. 2023). These properties suggest a new use for
ABM: if LLM agents are placed in a Schelling-type world and supplied with different
social framings (race, ethnicity, income, politics), their relocation choices may reveal
how “context” activates distinct preference structures—without manually rewriting
utility or thresholds by hand.

Many researchers are focusing on testing and measuring micro-level bias in LLM
responses (Li et al., 2022; Zhang et al., 2023, 2023b; Huang et al., 2023; Morales et
al., 2024). These studies provide valuable insights into evaluating LLM fairness and
bias, but they focus on single model outputs, instead of broader social effects when
LLMs are widely used. Cheng et al. (2024) adapt Schelling’s segregation model and
find that even when LLMs perform well on bias benchmarks, they still lead to highly
segregated outcomes once many people follow the LLM suggestions.

Building on this idea, our study focuses on how LLMs perform in different social
contexts, such as race, ethnicity, income, and politics. And we showed that LLMs
can capture culturally-embedded preferences and biases, performing well in producing
segregation dynamics that vary with social context.

In our study, we hold the physical environment, density, and movement mechan-
ics fixed while varying only the social framing in the prompts given to LLM agents.
We then characterize outcomes with a multidimensional metric suite inspired by
Pancs and Vriend (2007)—augmenting global similarity (“share”) with spatial conti-
guity (clusters), spatial separation (distance), extreme local isolation (ghetto rate),
local composition deviations, and boundary complexity (switch rate). This design
attempts to address two gaps. First, most Schelling-style ABMs treat group labels as
symmetric placeholders; we test whether social meaning alone systematically shifts
emergent segregation. Second, while empirical benchmarks document that racial/eth-
nic and partisan sorting differ in magnitude and texture, models rarely compare these
contexts head-to-head under uniform mechanics. By leveraging LLM agents as “cul-
tural mirrors,” we assess whether politically framed agents generate stronger, faster
consolidation than racially/ethnically framed agents, and whether income-framed
agents remain comparatively integrated—patterns that would align with documented
empirical regularities (Cutler et al. 1999; Logan and Stults 2011; Brown 2021) while
highlighting when economic identity is a weaker segregation driver.

Finally, this approach specifies the scope of the study. We do not claim that
LLMs reveal true causal mechanisms or unbiased preferences; rather, we test whether
context-dependent cultural priors encoded in LLMs reproduce qualitative differences
seen in real-world segregation. In doing so, we complement structural extensions
(Vicario et al. 2024; Bonakdar and Flache 2023; Li and Wang 2020) with a modular,
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prompt-driven method that isolates the role of social meaning under identical spa-
tial and behavioral rules—thereby connecting classic ABM insights to contemporary
evidence on heterogeneous axes of sorting.

3 Model

3.1 Environment
Consider a finite grid G ⊂ Z2 with |G| = L2 cells and Moore neighborhoods of radius
1 (up to 8 neighbors). There are two groups T = {A,B} and N ≤ |G| agents; each cell
hosts at most one agent, some cells may be vacant. A configuration is x ∈ X, mapping
each g ∈ G to A,B, or ∅ (vacant). Let N(g) denote the set of occupied neighbors of
cell g.

For an agent i of type ti ∈ T placed at g, the local share of same-type neighbors is

si(x) =
#{j ∈ N(g) : tj = ti}

#{j ∈ N(g)}
∈ [0, 1], (1)

interpreted as 0 if N(g) = ∅.

3.2 Social context and preferences
A social context c ∈ C (e.g., baseline, race, ethnicity, income, politics) parametrically
shifts how similarity maps into utility via a homophily slope θc ≥ 0.

[Modest homophily] A context exhibits modest homophily if θc ∈ (0, θ̄) for some
scale θ̄ > 0 such that single-neighbor gains from replacing an unlike with a like neigh-
bor are small relative to the idiosyncratic noise scale (cf. eq:utility,eq:logit): formally,
θc < IQR(ε)/(k) for typical neighborhood size k ≤ 8.

Agents evaluate candidate locations with latent utility

ui(g | x, c) = αc + θc si
(
xg←i

)
+ εi,g, (2)

where xg←i replaces i’s current cell by g, αc is a context intercept, and εi,g is i.i.d.
taste shock.

[Monotone similarity] For all c ∈ C and i, the utility in (2) is strictly increasing in
si holding other arguments fixed.

3.3 Choice and dynamics
Time is discrete. Each period selects one agent i uniformly at random and a finite
menu Gi ⊆ {vacancies} ∪ {stay}. The agent chooses according to a logit (random
utility) rule with intensity κ ≥ 0:

Pr
(
g ∈ Gi | x, c

)
=

exp{κui(g | x, c)}∑
h∈Gi exp{κui(h | x, c)}

. (3)

When κ → ∞ this converges to myopic best response; when κ = 0 choices are random.
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Let E ⊆ G×G be the set of undirected adjacent pairs (Moore adjacency). Define
the potential

Φ(x) =
∑

(p,q)∈E

1{tp = tq and both occupied}, (4)

that counts same-type edges.

3.4 Segregation metrics
For configuration x define:

S(x) =
1

|E|
∑

(p,q)∈E

1{tp = tq} ∈ [1/2, 1], (global similarity / share)

(5)

C(x) = number of connected same-type components, (clusters) (6)

D(x) =
1

N

∑
i

min
j:tj ̸=ti

dist1(gi, gj), (L1 distance to nearest out-group)

(7)

G(x) = #{i : #{j ∈ N(gi) : tj ̸= ti} = 0}, (ghetto rate) (8)

M(x) =
1

N

∑
i

∣∣si(x)− 1/2
∣∣, (mix deviation) (9)

R(x) = 1− S(x). (boundary / switch rate)
(10)

Let πθc,κ denote the stationary distribution of the induced Markov chain (which exists
and is unique under mild reachability conditions). Write Ȳ (θc) = Eπθc,κ

[Y (x)] for
metric Y ∈ {S,C,D,G,M,R}.

3.5 Estimation and Testing with LLM agents
In the LLM-ABM, each agent’s “move/stay and where” decision is generated by a
large language model conditioned on context prompts. We recover a reduced-form
homophily slope θ̂c from logs via a panel logit:

Pr(movei,t = 1) = σ
(
β0c + θ̂c si,t

)
+ controls, (11)

where σ(·) is the logistic cdf and controls may include vacancy options or location
fixed effects.

Testable implications.
For each replication and context c:

1. Monotonicity (Proposition 1). Regress S, D, G, M on θ̂c (expect positive
coefficients) and C, R on θ̂c (expect negative coefficients).

8



2. Context ranking (Proposition 2). Use context dummies or ordered contrasts
to verify the predicted ordering of stationary means.

3. Speed and boundaries (Proposition 3). Compute τ0.9 and terminal R; test
corr(τ0.9, θ̂c) < 0 and corr(R, θ̂c) < 0.

4. Modest vs. strong (Proposition 4). Split runs by θ̂c quantiles; compare
absorption rates and R.

5. Vacancy (Proposition 5). Vary density; regress S and C on vacancy share.

Implementation note. The ABM holds the physical environment, density, and update
mechanics fixed across contexts; only the social framing in prompts varies. This isolates
the effect of θc on emergent segregation.

4 Methods

4.1 Experimental Design
CHECK THIS We implemented a comparative framework using identical environ-
mental conditions across all social contexts. The simulation environment consists of a
15×15 grid (225 cells) populated with 50 agents equally divided between two groups
(25 each), yielding a density of 22.2%.

4.2 LLM Agent Implementation
WRITE CORRECT CATEGORIES HERE

Each LLM agent receives contextual prompts describing their social identity and
current neighborhood situation. The prompt structure varies by scenario to activate
relevant cultural knowledge:

Baseline (Control):

You are a [red/blue] resident in a neighborhood simulation...

Racial Context:

You are a [White middle-class family/Black family] looking for a
comfortable neighborhood. Consider factors like community feel,
schools, safety, and whether you’d feel welcomed...

Economic Context:

You are a [high-income professional household/working-class family]
evaluating your neighborhood. Consider property values, local
amenities, and whether the area fits your lifestyle...

Political Context:

You are a [liberal household/conservative household] in a diverse
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community. Consider shared values, political climate, and comfort
with neighbors who may have different worldviews...

The LLM (Qwen2.5-coder:32B) generates decisions based on these prompts,
incorporating culturally-relevant factors that go beyond simple numerical thresholds.

4.3 Segregation Metrics
We employ the Pancs-Vriend framework (Pancs and Vriend, 2007) with six comple-
mentary metrics designed specifically for grid-based segregation models:

• Share: Proportion of same-type neighbor pairs (0.5 = perfect integration, 1.0 =
complete segregation). Captures global segregation level.

• Clusters: Number of spatially contiguous same-type regions. Fewer clusters
indicate more consolidated ethnic enclaves.

• Distance: Average Manhattan distance to nearest different-type agent. Higher
values indicate greater spatial separation.

• Ghetto Rate: Count of agents with zero different-type neighbors. Captures
extreme isolation and “ghettoization.”

• Mix Deviation: Average deviation from 50-50 local integration. Measures segre-
gation at the individual neighborhood level.

• Switch Rate: Frequency of type changes along agent borders. Higher values
indicate more jagged, intermixed boundaries.

This multidimensional approach reveals not just the degree but the character
of segregation - critical for understanding how different social framings produce
qualitatively different patterns.

4.4 Statistical Analysis
CORRECT THIS

All experiments were run with multiple replicates (10-100 runs per condition).
We use ANOVA for multi-group comparisons and report effect sizes using Cohen’s d.
Convergence is detected using plateau detection algorithms.

5 Results

5.1 NEW FIGURES
These are the three figures we want to actually use:
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Fig. 1: Convergence Patterns

This is the old analysis and images:

5.2 Overall Segregation Patterns

5.3 Key Findings by Context

Table 1: Summary statistics for key segregation metrics across social contexts REDO
THIS TABLE

Context Ghetto Rate Seg. Share Distance Switch Rate N
Baseline (Red/Blue) 19.5 ± 9.6 0.679 ± 0.072 1.59 ± 0.28 0.363 ± 0.078 10
Ethnic (Asian/Hispanic) 38.9 ± 11.2 0.821 ± 0.076 2.28 ± 0.38 0.205 ± 0.081 1
Income (High/Low) 5.0 ± 3.1 0.543 ± 0.034 1.24 ± 0.08 0.471 ± 0.055 1
Political (Liberal/Conservative) 61.6 ± 9.3 0.928 ± 0.042 3.37 ± 0.53 0.076 ± 0.036 1
Race (White/Black) 40.8 ± 9.6 0.823 ± 0.060 2.39 ± 0.43 0.194 ± 0.064 1
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Fig. 2: Convergence Speed Comparison

WHERE DID THIS COME FROM?

Table 2: Comparison of Segregation Metrics: Model Results and Empirical Benchmarks

Metric Comparison with Empirical Data (2010)

Dissimilarity (D) Empirical: Black-White: 59.1; Hispanic-White: 48.5 Logan and Stults (2011)

Isolation/Exposure (Share) Empirical: Black Isolation: 45.2; Hispanic Isolation: 46.0 Logan and Stults (2011)

Regional Variability Higher segregation in “Ghetto Belt” metropolitan areas (Dissimilarity > 60) Cutler et al. (1999)

5.4 Statistical Significance

5.5 Convergence Patterns
REWRITE The dynamics varied significantly across contexts. Our temporal analysis
reveals:

Political contexts - Rapid crystallization with 1.95 times higher volatility in
early stages before lock-in (switch rate drops to 0.076). Phase transitions occur within
first 20 steps.

Economic contexts - Perpetual motion with nearly equal early/late volatil-
ity (0.91 times ratio) and continuous mobility (switch rate 0.471), never reaching
equilibrium.

Racial/Ethnic contexts - Historical patterns with gradual transitions over 50-80
steps, showing 1.47 times early volatility (race) before eventual stabilization.
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Fig. 3: Segregation Metrics Comparison

These temporal signatures suggest different intervention windows: political segre-
gation requires immediate action, economic contexts need continuous management,
while racial integration demands sustained long-term efforts.

6 Statistical analysis

6.1 Diagnostics
We first characterize distributional assumptions within each group. We assess nor-
mality using the Shapiro–Wilk test (Shapiro and Wilk, 1965); for each metric we
summarize the minimum groupwise p to indicate the strongest departure from nor-
mality. We evaluate equality of variances across groups using Levene’s test (Levene,
1960). Across many metrics, Shapiro–Wilk frequently rejected normality and Levene
often rejected homoscedasticity, indicating skew, heavy tails, outliers, and unequal
dispersion. Given these features, we adopt a rank-based, nonparametric framework
for inference. Unless noted, all tests are two-sided with α = 0.05, and all numerical
results are rounded to three decimals. Observations are assumed independent within
and across groups.

6.2 Omnibus test (Kruskal–Wallis and effect size)
For each metric, overall between-group differences were tested using the Kruskal–
Wallis (KW) one-way analysis of variance on ranks (Kruskal and Wallis, 1952). The
KW statistic H tests the global null that all group distributions are identical. Along-
side H and its p-value, we report an effect-size estimate based on epsilon-squared, ε̂2,
as a measure of the proportion of variability in ranks attributable to between-group
differences (usage guidance: (Tomczak and Tomczak, 2014)). The omnibus test serves
as a global summary and does not identify which specific groups differ.
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6.3 Post-hoc pairwise comparisons (Mann–Whitney with
Holm correction)

To localize differences, we conducted pairwise comparisons between groups within
each metric using the Mann–Whitney (Wilcoxon rank-sum) test (Mann and Whitney,
1947). Multiplicity was controlled within metric using the Holm procedure (Holm,
1979) to maintain the family-wise error rate across all pairs. For each pair we report the
median contrast ∆ = x̃g1 − x̃g2 , the raw p-value (praw), and the Holm-adjusted p-value
(padj). The Mann–Whitney statistic admits a probability-of-superiority interpretation
(stochastic dominance), making results compatible with distributional location shifts
beyond means; where noted, we complement results with rank-based effect sizes (e.g.,
Vargha–Delaney A or Cliff’s δ; Vargha and Delaney, 2000; Cliff, 1993). Unless oth-
erwise stated, ties are handled using the standard mid-rank approach and exact or
large-sample approximations are used according to sample size.

This nonparametric framework is appropriate here because it (i) does not require
Gaussian errors or equal variances, (ii) is robust to outliers and ties, (iii) answers the
scientific question of distributional/location shifts across groups, and (iv) provides
multiplicity-controlled pairwise evidence after establishing that some difference exists.
All inferences assume independent observations within and across groups.

6.4 Composite Segregation Index
To create an overall segregation index, we performed Principal Component Analy-
sis on six standardized metrics: cluster count, switch rate, average distance, mixing
deviation, group share imbalance, and ghetto formation rate. We first aligned metric
directions such that higher values consistently indicated greater segregation (revers-
ing cluster count and switch rate). PC1 explained 78.3% of total variance and loaded
positively on all metrics (loadings ranged from 0.32 to 0.45), confirming it cap-
tured a general segregation factor. Complete PCA diagnostics are provided in the
Appendix 9).

7 Results

7.1 Descriptive Patterns
The data show coherent but non-Gaussian distributions across groups: central ten-
dency and spread differ systematically by scenario, several metrics exhibit skew and
occasional outliers, and dispersion is heterogeneous. The summary tables report n,
means, medians and dispersion Appendix A.

Across outcomes, group distributions are well stratified when boxplots are ordered
by the group median. The strongest separation appears in ghetto_rate, where medi-
ans span from single digits to ∼70 and higher-median scenarios also exhibit larger
dispersion; these gaps mirror the largest Mann–Whitney post hoc effects after Holm
adjustment. distance shows a similarly clean gradient with broad, visually non-
overlapping boxes at the high end, again consistent with the adjusted pairwise results.
share presents a compact but persistent right shift for political_liberal_conservative
relative to other scenarios. In contrast, switch_rate, mix_deviation, and clusters
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display more overlap and several contrasts that do not remain significant after
multiplicity control, indicating smaller or less stable effects.

Fig. 4: Ghetto rate

Fig. 5: Distance

Box-plots above are ordered by median. Boxes show median and IQR; whiskers are
1.5×IQR. Visually large separations (e.g., in ghetto-rate and distance) are consistent
with the significant omnibus and Holm-adjusted pairwise padj are reported in (LINK
TO Appendix ).

7.2 Global nonparametric tests
While the figures characterize sample distributions, population comparisons and their
uncertainty are established via nonparametric inference. Normality and equal-variance
assumptions are not supported in our data: within–group Shapiro–Wilk diagnostics
frequently reject normality (minimum groupwise p ≤ 0.05 for many metrics) and Lev-
ene’s tests often reject homoscedasticity (typically p < 0.001), indicating heavy tails,
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Fig. 6: Share

Fig. 7: Composite Segregation Index

outliers, and unequal dispersion. Accordingly, for each metric we apply the Kruskal–
Wallis (KW) one-way analysis of variance on ranks to test the global null of identical
group distributions. We report the KW statistic H, its p-value, and an effect-size esti-
mate (ε̂2) as a measure of magnitude; results are summarized in Table 3.FIX -To
summarize separation across all groups for a given metric, we report the
Kruskal–Wallis omnibus test with its nonparametric effect size ε2, which
indicates the share of variability attributable to between-group differences;
larger ε2 reflects stronger overall group separation. The omnibus results (H,
p, and ε2) establish that pairwise follow-ups are warranted thus we include δ and A12

for flagship contrasts.

7.3 Post-hoc pairwise comparisons
Because the Kruskal–Wallis omnibus test establishes whether any between-group dif-
ferences exist but not which groups differ, we estimated two-sided Mann–Whitney
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Table 3: Summary of Kruskal–Wallis test results across metrics
metric global_test H-statistic effect_size min_shapiro_p

share Kruskal–Wallis 416.920 0.817 0.005
ghetto_rate Kruskal–Wallis 410.447 0.804 0.000
switch_rate Kruskal–Wallis 405.694 0.795 0.028
mix_deviation Kruskal–Wallis 403.972 0.791 0.002
distance Kruskal–Wallis 400.617 0.785 0.000
clusters Kruskal–Wallis 387.622 0.759 0.000

Notes: All values are rounded to three decimals. The Kruskal–Wallis test was applied
to each metric across seven groups to assess overall group differences in distribution.
Columns p_value, levene_p, are omitted. and uniformly significant (p < 0.001),
n_groups = 7 across metrics.

(Wilcoxon rank-sum) contrasts for all group pairs within each metric and controlled
multiplicity within metric using the Holm procedure (family-wise error rate). For each
pair we report the median contrast ∆ = x̃g1 − x̃g2 , the raw p-value (praw), and the
Holm-adjusted p-value (padj) (see Table 6 ??). This presentation emphasizes direction
and magnitude (via ∆) while clearly indicating which effects remain detectable after
multiplicity adjustment (via padj). The Mann–Whitney statistic admits a probability-
of-superiority (stochastic dominance) interpretation and is compatible with shifts
in medians/quantiles rather than means, aligning with the distributional features
observed in our data. The rank-based framework is robust to non-normality, unequal
variances, outliers, and ties; unless noted otherwise, independence of observations is
assumed.

Quantities reported for pairwise comparisons
For each outcome metric (e.g., ghetto_rate, distance, share), we analyze groups in
pairs. The order of the groups defines the sign of the reported differences. The primary
effect measure is the median difference,

∆ = median(Group 1) − median(Group 2),

so that ∆ > 0 indicates that Group 1 tends to take larger values than Group 2, and
∆ < 0 indicates the reverse. This choice provides a robust location shift that remains
interpretable under skewness and unequal variances.

Statistical evidence for each contrast is summarized by the Holm–adjusted two-
sided Mann–Whitney p-value, multiplicity-robust, padj , computed within each metric
to control the family-wise error rate across all pairwise comparisons. Small values (e.g.,
padj < 0.05) indicate that the difference remains detectable after multiplicity control.

We complement ∆ and padj with a unit-free rank-based effect size. Cliff’s delta
δ ∈ [−1, 1] quantifies stochastic dominance (positive values favor Group 1, negative
values favor Group 2; |δ| ≈ 0.11, 0.28, 0.43 are often taken as small, medium, large).
An equivalent probability-type measure is the Vargha–Delaney A12 ∈ [0, 1], related
by A12 = (δ + 1)/2; values above 0.5 favor Group 1, below 0.5 favor Group 2 and
equal to 0.5 reflect no dominance. These effect sizes are robust to outliers and do not
depend on measurement units.
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Table 4: Post-hoc pairwise comparison summaries (*=p<0.05, **=p<0.01, ***=p<0.001).
Metric Ordered group relations
clusters mech_baseline = political_liberal_conservative <∗∗∗ ethnic_asian_hispanic <∗∗∗

race_white_black <∗∗∗ llm_baseline <∗∗∗ green_yellow = income_high_low

distance green_yellow = income_high_low = llm_baseline <∗∗∗ mech_baseline = eth-
nic_asian_hispanic = race_white_black <∗∗∗ political_liberal_conservative

ghetto_rate green_yellow = income_high_low <∗ llm_baseline <∗∗∗ ethnic_asian_hispanic =
race_white_black <∗∗ mech_baseline <∗∗∗ political_liberal_conservative

mix_deviation green_yellow <∗∗ income_high_low = llm_baseline <∗∗∗ mech_baseline =
race_white_black = ethnic_asian_hispanic <∗∗∗ political_liberal_conservative

share green_yellow = income_high_low <∗ llm_baseline <∗∗∗ ethnic_asian_hispanic =
race_white_black <∗∗∗ mech_baseline <∗∗∗ political_liberal_conservative

switch_rate political_liberal_conservative <∗∗∗ race_white_black = ethnic_asian_hispanic =
mech_baseline <∗∗∗ llm_baseline = income_high_low = green_yellow

segregation_index
(composite)

green_yellow = income_high_low <∗∗∗ llm_baseline <∗∗∗ ethnic_asian_hispanic =
race_white_black <∗ mech_baseline <∗∗∗ political_liberal_conservative

Note. Higher values of Share, Distance, Ghetto rate, and Mix deviation all indicate stronger spatial segregation, reflecting greater
local homogeneity or isolation. A higher Clusters value, in contrast, corresponds to more fragmented but less consolidated enclaves,
whereas a lower number of clusters indicates larger andand more cohesive segregated regions. Finally, a higher Switch rate reflects
greater boundary mixing and therefore weaker segregation.

Clusters.
Most contrasts were statistically significant after adjustment, with large magnitudes.
The largest effects included income_high_low vs political_liberal_conservative (∆ =
15, padj < 0.001) and mech_baseline vs income_high_low (∆ = −15, padj < 0.001).
A small number of contrasts were not significant (e.g., mech_baseline vs politi-
cal_liberal_conservative: ∆ = 0, padj = 0.772; green_yellow vs income_high_low :
∆ = −1, padj = 0.851).

Switch_rate.
Many contrasts were significant with moderate effect sizes. Larger positive differences
involved green_yellow vs political_liberal_conservative (∆ = 0.403, padj < 0.001)
and income_high_low vs political_liberal_conservative (∆ = 0.379, padj < 0.001).
Several comparisons were not significant after adjustment (e.g., mech_baseline vs eth-
nic_asian_hispanic: padj = 0.220; green_yellow vs income_high_low : padj = 0.214;
ethnic_asian_hispanic vs race_white_black : padj = 0.220).

Distance.
Differences were generally pronounced and frequently significant. The largest magni-
tudes were green_yellow vs political_liberal_conservative (∆ = −2.300, padj < 0.001)
and income_high_low vs political_liberal_conservative (∆ = −2.200, padj < 0.001).
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Multiple pairs were not significant (e.g., mech_baseline vs ethnic_asian_hispanic:
padj = 1.000; mech_baseline vs race_white_black : padj = 1.000; green_yellow vs
income_high_low : padj = 0.314; ethnic_asian_hispanic vs race_white_black : padj =
1.000).

Mix_deviation.
A broad pattern of significant differences emerged; the largest absolute contrasts
were green_yellow vs political_liberal_conservative (∆ = −0.254, padj < 0.001)
and income_high_low vs political_liberal_conservative (∆ = −0.217, padj <
0.001). Several comparisons were not significant (e.g., mech_baseline vs eth-
nic_asian_hispanic: padj = 0.300; mech_baseline vs race_white_black : padj = 0.300;
ethnic_asian_hispanic vs race_white_black : padj = 0.995). A small but significant
effect was observed for green_yellow vs income_high_low (∆ = −0.038, padj =
0.009).

Share.
Many contrasts were significant, with larger negative differences against politi-
cal_liberal_conservative (e.g., green_yellow vs political_liberal_conservative: ∆ =
−0.382, padj < 0.001). A subset were non-significant (e.g., green_yellow vs
income_high_low : padj = 0.088; ethnic_asian_hispanic vs race_white_black : padj =
0.522). The llm_baseline vs income_high_low contrast was small but significant
(∆ = 0.060, padj = 0.013).

Ghetto_rate.
Effects were typically large and significant post-adjustment. The most extreme differ-
ences were green_yellow vs political_liberal_conservative (∆ = −58.0, padj < 0.001)
and income_high_low vs political_liberal_conservative (∆ = −54.5, padj < 0.001).
Several contrasts were not significant (e.g., green_yellow vs income_high_low : padj =
0.272; ethnic_asian_hispanic vs race_white_black : padj = 0.272).

Composite Segregation Index.
To assess overall segregation patterns across multiple dimensions, we constructed a
composite segregation index using Principal Component Analysis (Appendix C) of
the above six metrics. Pairwise Mann-Whitney tests with Holm correction revealed
a clear hierarchy across scenarios. The abstract color scenarios (green_yellow) and
economic inequality scenario (income_high_low) exhibited the lowest segregation,
statistically indistinguishable from each other (p = .124). The LLM baseline condi-
tion showed significantly higher segregation than both (both p values < .001), yet
remained significantly less segregated than the racial and ethnic identity scenarios
(ethnic_asian_hispanic, race_white_black ; both p values < .001), which were them-
selves statistically equivalent (p = .929). Notably, the mechanical baseline-where
agents used simple best-response utility maximization without language model rea-
soning, produced intermediate segregation levels, significantly lower than the political
ideology scenario (p < .001) but not significantly different from the racial scenar-
ios when considering the Holm-adjusted threshold (p = .055 for race_white_black).

19



The political ideology scenario (political_liberal_conservative) exhibited the highest
segregation of all conditions tested.

Overall pattern.
Across metrics, contrasts involving political_liberal_conservative frequently exhibited
the largest absolute median differences and remained significant after Holm correction.
In contrast, pairs involving ethnic_asian_hispanic vs race_white_black, and several
comparisons against income_high_low or green_yellow, were more likely to be non-
significant after adjustment, indicating scenario-dependent distributional shifts across
multiple outcomes.

8 Discussion

8.1 Social Context as a Driver of Segregation
Our results demonstrate that LLM agents produce dramatically different segrega-
tion patterns based solely on the social framing of group identity. This suggests that
LLMs have successfully absorbed and can reproduce culturally-specific residential
preferences and biases from their training data.

8.1.1 Political Polarization: A Special Case

The extreme segregation in political scenarios (12.3 times higher ghetto formation than
economic contexts) reflects contemporary political polarization. LLM agents framed
as liberal or conservative households exhibited:

• Strong in-group preferences
• Minimal tolerance for political diversity
• Rapid self-sorting into homogeneous clusters

This mirrors recent research on political segregation in the United States, where
partisan identity increasingly influences residential choices (Brown, 2021).

8.1.2 Economic Factors: Weaker Than Expected

Surprisingly, economic contexts produced the least segregation. This challenges
conventional wisdom about income-based residential sorting and suggests that:

• Economic diversity may be more tolerable than other forms of difference
• Professional and working-class identities may not trigger the same avoidance

behaviors as racial or political differences
• Economic integration may be facilitated by shared non-economic interests

8.1.3 Racial/Ethnic Patterns: Historical Echoes

The intermediate segregation levels for racial and ethnic contexts (ghetto rates ∼40)
align remarkably well with actual U.S. residential segregation indices. This suggests
LLMs have internalized realistic patterns of racial residential preferences, including:
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• Moderate but persistent homophily
• Complex factors beyond simple same-race preferences
• Historical patterns of discrimination and self-selection

8.2 Implications for Agent-Based Modeling
These findings have several important implications:

1. Context Matters: Abstract labels (red/blue, A/B) may not capture the full
dynamics of social segregation. Real-world identities activate different preference
structures.

2. LLMs as Cultural Mirrors: LLMs can serve as repositories of cultural knowl-
edge, biases, and social patterns, making them valuable tools for modeling
culturally-specific phenomena.

3. Policy Testing: Models using context-aware LLM agents may provide more
realistic predictions of policy interventions’ effects on different communities.

8.3 Limitations and Future Work
Several limitations warrant consideration:

1. Single LLM: Results may vary with different language models or prompting
strategies

2. U.S.-Centric: The LLM’s training data likely reflects primarily American cultural
patterns

3. Simplified Identities: Real individuals have multiple, intersecting identities not
captured here

4. Static Preferences: Agent preferences don’t evolve based on experiences

Future research should explore:

• Intersectional identities (e.g., race + income + politics)
• Cross-cultural comparisons using LLMs trained on different corpora
• Dynamic preference evolution through agent interactions
• Validation against real-world mobility data

9 Conclusion
This study demonstrates that Large Language Models can successfully capture and
reproduce culturally-specific segregation patterns in agent-based models. By simply
changing the social framing from abstract colors to meaningful social identities, we
observe dramatically different segregation dynamics—from the extreme clustering of
political groups to the relative integration of economic classes.

These findings suggest that LLM-based agents offer a powerful new tool for social
science research, enabling models that incorporate the full complexity of human social
preferences and biases. As we seek to understand and address residential segregation,
models that can distinguish between “red vs blue” and “liberal vs conservative” may
provide more actionable insights for policy makers and urban planners.
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The ability of LLMs to serve as cultural mirrors—reflecting the biases, preferences,
and social patterns embedded in human text—opens new avenues for studying social
phenomena at scale. However, this same capability requires careful consideration of
the biases we may be reproducing and amplifying through these models.
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Table A.1: Descriptive Statistics by Metric and Scenario

Statistics

Metric Scenario N Mean SD SE Median

Clusters
Income (high/low) 10 20.60 4.01 1.27 20.00
Color (green/yellow) 100 20.46 5.30 0.53 19.00
LLM baseline 100 13.81 4.26 0.43 13.00
Race (White/Black) 100 9.99 3.15 0.32 10.00
Ethnic (Asian/Hispanic) 50 7.66 2.99 0.42 8.00
Political (liberal/conservative) 50 5.14 2.25 0.32 5.00
Mechanical baseline 100 4.66 1.56 0.16 5.00

Distance
Political (liberal/conservative) 50 3.57 0.41 0.06 3.58
Race (White/Black) 100 2.47 0.45 0.04 2.44
Mechanical baseline 100 2.46 0.44 0.04 2.38
Ethnic (Asian/Hispanic) 50 2.45 0.44 0.06 2.39
LLM baseline 100 1.59 0.28 0.03 1.51
Income (high/low) 10 1.41 0.22 0.07 1.38
Color (green/yellow) 100 1.29 0.12 0.01 1.28

Ghetto Rate
Political (liberal/conservative) 50 64.76 7.01 0.99 65.00
Mechanical baseline 100 48.54 7.66 0.77 48.00
Race (White/Black) 100 43.64 10.04 1.00 44.00
Ethnic (Asian/Hispanic) 50 41.74 9.05 1.28 42.00
LLM baseline 100 19.48 9.57 0.96 17.00
Income (high/low) 10 11.20 7.41 2.34 10.50
Color (green/yellow) 100 7.65 4.71 0.47 7.00

Mix Deviation
Political (liberal/conservative) 50 0.45 0.02 0.00 0.46
Ethnic (Asian/Hispanic) 50 0.39 0.03 0.00 0.39
Race (White/Black) 100 0.38 0.03 0.00 0.39
Mechanical baseline 100 0.38 0.03 0.00 0.38
LLM baseline 100 0.28 0.05 0.00 0.27
Income (high/low) 10 0.25 0.04 0.01 0.24
Color (green/yellow) 100 0.20 0.03 0.00 0.20

Share
Political (liberal/conservative) 50 0.95 0.03 0.00 0.95
Mechanical baseline 100 0.87 0.03 0.00 0.87
Race (White/Black) 100 0.84 0.06 0.01 0.84
Ethnic (Asian/Hispanic) 50 0.84 0.04 0.01 0.84
LLM baseline 100 0.68 0.07 0.01 0.67
Income (high/low) 10 0.60 0.06 0.02 0.61
Color (green/yellow) 100 0.56 0.05 0.01 0.56

Switch Rate
Color (green/yellow) 100 0.46 0.05 0.00 0.46
Income (high/low) 10 0.42 0.08 0.03 0.44
LLM baseline 100 0.36 0.08 0.01 0.37
Mechanical baseline 100 0.20 0.06 0.01 0.21
Ethnic (Asian/Hispanic) 50 0.19 0.04 0.01 0.18
Race (White/Black) 100 0.18 0.06 0.01 0.18
Political (liberal/conservative) 50 0.06 0.03 0.00 0.06

Composite Segregation Index
Political (liberal/conservative) 50 3.44 0.72 0.10 3.52
Mechanical baseline 100 1.55 0.84 0.08 1.46
Ethnic (Asian/Hispanic) 50 1.22 0.91 0.13 1.19
Race (White/Black) 100 1.17 1.05 0.10 1.17
LLM baseline 100 −1.52 1.15 0.12 −1.65
Income (high/low) 10 −2.71 0.90 0.29 −2.68
Color (green/yellow) 100 −3.26 0.75 0.08 −3.25

Note: SE (standard error) = SD/
√
N . The composite segregation index is based on PC1 from PCA of six

segregation metrics, explaining 93.2% of total variance. Within each metric, scenarios are ordered by mean
value.
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Appendix B: Statistical Analysis

Table B.1: Pairwise scenario contrasts by metric: median differences (∆), Cliff’s δ,
Vargha–Delaney A12 , and Holm-adjusted p.
MetricGroup 1 Group 2 ∆ δ A12 padj

clusters
ethnic_asian_hispanic income_high_low −12.00 −0.99 0.00 4.51×10−6

ethnic_asian_hispanic political_liberal_conservative 3.00 0.50 0.75 6.21×10−5

ethnic_asian_hispanic race_white_black −2.00 −0.42 0.29 1.32×10−4

green_yellow ethnic_asian_hispanic 11.00 0.98 0.99 0.00
green_yellow income_high_low −1.00 −0.04 0.48 0.85
green_yellow political_liberal_conservative 14.00 1.00 1.00 0.00
green_yellow race_white_black 9.00 0.92 0.96 0.00

income_high_low political_liberal_conservative 15.00 1.00 1.00 4.43×10−6

income_high_low race_white_black 10.00 0.96 0.98 3.95×10−6

llm_baseline ethnic_asian_hispanic 5.00 0.79 0.89 0.00
llm_baseline green_yellow −6.00 −0.69 0.16 0.00

llm_baseline income_high_low −7.00 −0.76 0.12 2.33×10−4

llm_baseline mech_baseline 8.00 0.99 0.99 0.00
llm_baseline political_liberal_conservative 8.00 0.95 0.98 0.00

llm_baseline race_white_black 3.00 0.54 0.77 6.00×10−10

mech_baseline ethnic_asian_hispanic −3.00 −0.62 0.19 3.80×10−9

mech_baseline green_yellow −14.00 −1.00 1.50×10−4 0.00

mech_baseline income_high_low −15.00 −1.00 0.00 1.24×10−6

mech_baseline political_liberal_conservative 0.00 −0.09 0.46 0.77
mech_baseline race_white_black −5.00 −0.89 0.06 0.00
political_liberal_conservative race_white_black −5.00 −0.80 0.10 0.00

distance
ethnic_asian_hispanic income_high_low 1.01 0.98 0.99 7.40×10−6

ethnic_asian_hispanic political_liberal_conservative −1.19 −0.91 0.05 0.00
ethnic_asian_hispanic race_white_black −0.04 −0.06 0.47 1.00
green_yellow ethnic_asian_hispanic −1.11 −1.00 0.00 0.00
green_yellow income_high_low −0.10 −0.34 0.33 0.31
green_yellow political_liberal_conservative −2.30 −1.00 0.00 0.00
green_yellow race_white_black −1.16 −1.00 0.00 0.00

income_high_low political_liberal_conservative −2.20 −1.00 0.00 5.21×10−6

income_high_low race_white_black −1.06 −0.97 0.02 3.86×10−6

llm_baseline ethnic_asian_hispanic −0.88 −0.92 0.04 0.00
llm_baseline green_yellow 0.23 0.76 0.88 0.00
llm_baseline income_high_low 0.13 0.43 0.71 0.13
llm_baseline mech_baseline −0.87 −0.92 0.04 0.00
llm_baseline political_liberal_conservative −2.07 −1.00 0.00 0.00
llm_baseline race_white_black −0.93 −0.90 0.05 0.00
mech_baseline ethnic_asian_hispanic −0.01 0.01 0.50 1.00
mech_baseline green_yellow 1.10 1.00 1.00 0.00

mech_baseline income_high_low 1.00 0.99 1.00 2.51×10−6

mech_baseline political_liberal_conservative −1.20 −0.91 0.05 0.00
mech_baseline race_white_black −0.06 −0.05 0.48 1.00
political_liberal_conservative race_white_black 1.14 0.92 0.96 0.00

ghetto_rate
ethnic_asian_hispanic income_high_low 31.50 1.00 1.00 5.07×10−6

ethnic_asian_hispanic political_liberal_conservative −23.00 −0.93 0.04 0.00
ethnic_asian_hispanic race_white_black −2.00 −0.15 0.43 0.27
green_yellow ethnic_asian_hispanic −35.00 −1.00 0.00 0.00
green_yellow income_high_low −3.50 −0.28 0.36 0.27
green_yellow political_liberal_conservative −58.00 −1.00 0.00 0.00
green_yellow race_white_black −37.00 −1.00 0.00 0.00

income_high_low political_liberal_conservative −54.50 −1.00 0.00 5.07×10−6

income_high_low race_white_black −33.50 −0.98 0.01 2.67×10−6

llm_baseline ethnic_asian_hispanic −25.00 −0.89 0.05 0.00
llm_baseline green_yellow 10.00 0.79 0.89 0.00
llm_baseline income_high_low 6.50 0.52 0.76 0.02
llm_baseline mech_baseline −31.00 −0.97 0.02 0.00

llm_baseline political_liberal_conservative −48.00 −1.00 6.00×10−4 0.00
llm_baseline race_white_black −27.00 −0.89 0.05 0.00

mech_baseline ethnic_asian_hispanic 6.00 0.46 0.73 2.45×10−5

mech_baseline green_yellow 41.00 1.00 1.00 0.00

mech_baseline income_high_low 37.50 1.00 1.00 1.82×10−6

mech_baseline political_liberal_conservative −17.00 −0.87 0.07 0.00
mech_baseline race_white_black 4.00 0.29 0.64 0.00
political_liberal_conservative race_white_black 21.00 0.92 0.96 0.00

mix_deviation
ethnic_asian_hispanic income_high_low 0.15 1.00 1.00 5.22×10−6

ethnic_asian_hispanic political_liberal_conservative −0.07 −0.91 0.05 0.00

ethnic_asian_hispanic race_white_black 8.57×10−4 −8.00×10−4 0.50 1.00

Continued on next page
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MetricGroup 1 Group 2 ∆ δ A12 padj

green_yellow ethnic_asian_hispanic −0.18 −1.00 0.00 0.00
green_yellow income_high_low −0.04 −0.60 0.20 0.01
green_yellow political_liberal_conservative −0.25 −1.00 0.00 0.00

green_yellow race_white_black −0.18 −1.00 3.00×10−4 0.00

income_high_low political_liberal_conservative −0.22 −1.00 0.00 5.22×10−6

income_high_low race_white_black −0.15 −0.99 0.01 2.20×10−6

llm_baseline ethnic_asian_hispanic −0.11 −0.93 0.04 0.00
llm_baseline green_yellow 0.07 0.81 0.91 0.00
llm_baseline income_high_low 0.03 0.40 0.70 0.16
llm_baseline mech_baseline −0.10 −0.89 0.06 0.00
llm_baseline political_liberal_conservative −0.18 −1.00 0.00 0.00
llm_baseline race_white_black −0.11 −0.90 0.05 0.00
mech_baseline ethnic_asian_hispanic −0.01 −0.15 0.43 0.30
mech_baseline green_yellow 0.17 1.00 1.00 0.00

mech_baseline income_high_low 0.14 0.99 1.00 2.20×10−6

mech_baseline political_liberal_conservative −0.08 −0.94 0.03 0.00
mech_baseline race_white_black −0.01 −0.14 0.43 0.30
political_liberal_conservative race_white_black 0.07 0.92 0.96 0.00

share
ethnic_asian_hispanic income_high_low 0.23 1.00 1.00 5.22×10−6

ethnic_asian_hispanic political_liberal_conservative −0.11 −0.94 0.03 0.00
ethnic_asian_hispanic race_white_black 0.00 −0.06 0.47 0.52
green_yellow ethnic_asian_hispanic −0.28 −1.00 0.00 0.00
green_yellow income_high_low −0.05 −0.39 0.31 0.09
green_yellow political_liberal_conservative −0.38 −1.00 0.00 0.00

green_yellow race_white_black −0.28 −1.00 7.00×10−4 0.00

income_high_low political_liberal_conservative −0.33 −1.00 0.00 5.22×10−6

income_high_low race_white_black −0.23 −0.99 0.00 1.95×10−6

llm_baseline ethnic_asian_hispanic −0.17 −0.93 0.04 0.00
llm_baseline green_yellow 0.11 0.83 0.92 0.00
llm_baseline income_high_low 0.06 0.55 0.77 0.01
llm_baseline mech_baseline −0.19 −0.97 0.02 0.00

llm_baseline political_liberal_conservative −0.27 −1.00 6.00×10−4 0.00
llm_baseline race_white_black −0.17 −0.91 0.05 0.00

mech_baseline ethnic_asian_hispanic 0.03 0.43 0.72 9.44×10−5

mech_baseline green_yellow 0.30 1.00 1.00 0.00

mech_baseline income_high_low 0.25 1.00 1.00 1.86×10−6

mech_baseline political_liberal_conservative −0.08 −0.90 0.05 0.00

mech_baseline race_white_black 0.02 0.32 0.66 4.24×10−4

political_liberal_conservative race_white_black 0.10 0.93 0.96 0.00

switch_rate
ethnic_asian_hispanic income_high_low −0.25 −1.00 0.00 5.22×10−6

ethnic_asian_hispanic political_liberal_conservative 0.13 0.97 0.98 0.00
ethnic_asian_hispanic race_white_black 0.00 0.15 0.57 0.22
green_yellow ethnic_asian_hispanic 0.28 1.00 1.00 0.00
green_yellow income_high_low 0.02 0.35 0.67 0.21
green_yellow political_liberal_conservative 0.40 1.00 1.00 0.00
green_yellow race_white_black 0.28 1.00 1.00 0.00

income_high_low political_liberal_conservative 0.38 1.00 1.00 5.22×10−6

income_high_low race_white_black 0.26 0.98 0.99 2.57×10−6

llm_baseline ethnic_asian_hispanic 0.18 0.93 0.97 0.00
llm_baseline green_yellow −0.09 −0.71 0.14 0.00
llm_baseline income_high_low −0.07 −0.39 0.30 0.17
llm_baseline mech_baseline 0.16 0.90 0.95 0.00
llm_baseline political_liberal_conservative 0.31 1.00 1.00 0.00
llm_baseline race_white_black 0.19 0.92 0.96 0.00
mech_baseline ethnic_asian_hispanic 0.03 0.16 0.58 0.22

mech_baseline green_yellow −0.25 −1.00 3.00×10−4 0.00

mech_baseline income_high_low −0.23 −0.99 0.00 2.32×10−6

mech_baseline political_liberal_conservative 0.15 0.96 0.98 0.00
mech_baseline race_white_black 0.03 0.27 0.63 0.01
political_liberal_conservative race_white_black −0.12 −0.93 0.04 0.00

composite_segregation_index
ethnic_asian_hispanic green_yellow 4.44 1.00 1.00 3.48×10−22

ethnic_asian_hispanic income_high_low 3.87 1.00 1.00 5.22×10−6

ethnic_asian_hispanic llm_baseline 2.84 0.92 0.96 5.01×10−19

ethnic_asian_hispanic mech_baseline −0.27 −0.22 0.39 0.09

ethnic_asian_hispanic political_liberal_conservative −2.33 −0.92 0.04 1.94×10−14

ethnic_asian_hispanic race_white_black 0.02 −0.01 0.50 0.93
green_yellow income_high_low −0.57 −0.36 0.32 0.12

green_yellow llm_baseline −1.60 −0.82 0.09 1.75×10−22

green_yellow mech_baseline −4.72 −1.00 0.00 5.38×10−33

green_yellow political_liberal_conservative −6.78 −1.00 0.00 3.48×10−22

green_yellow race_white_black −4.42 −1.00 0.00 6.92×10−33

income_high_low llm_baseline −1.03 −0.57 0.22 0.02

income_high_low mech_baseline −4.14 −1.00 0.00 1.86×10−6

income_high_low political_liberal_conservative −6.20 −1.00 0.00 5.22×10−6

income_high_low race_white_black −3.85 −0.99 0.00 2.06×10−6

llm_baseline mech_baseline −3.11 −0.96 0.02 3.62×10−30

Continued on next page
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MetricGroup 1 Group 2 ∆ δ A12 padj

llm_baseline political_liberal_conservative −5.17 −1.00 0.00 3.48×10−22

llm_baseline race_white_black −2.82 −0.90 0.05 8.65×10−27

mech_baseline political_liberal_conservative −2.06 −0.89 0.05 5.70×10−18

mech_baseline race_white_black 0.29 0.20 0.60 0.06

political_liberal_conservative race_white_black 2.35 0.93 0.96 3.61×10−19

Notes: ∆ = median(g1) − median(g2) (or mean difference if medians unavailable). Holm adjustment within metric. If Cliff’s
δ is present, A12 = (δ + 1)/2.
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Appendix C: PCA-Based Composite Segregation
Index

Table C.1: Principal Component Analysis: Variance Explained

Component Eigenvalue Variance Explained Cumulative %

PC1 5.590 93.2% 93.2%
PC2–PC6 (residual) 0.410 6.8% 100.0%

Total 6.000 100.0% —

Note: Eigenvalue for PC1 = 0.932×6 = 5.590. Six metrics were used as input. PC1 captures 93.2% of total
variance across all segregation metrics.

Table C.2: PC1 Loadings on Segregation Metrics

Metric Loading Contribution (%)

share 0.419 17.6
ghetto rate 0.419 17.5
mix deviation 0.418 17.5
switch rate (flipped) 0.413 17.1
distance 0.403 16.2
clusters (flipped) 0.376 14.1

Total — 100.0

Notes: All metrics were aligned so higher values indicate more segregation. Contribution calculated as
(loading2/

∑
loadings2)× 100. Metrics ordered by contribution to PC1.
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Table C.3: Pairwise comparisons between baseline and other social contexts
Context Ghetto Rate Ghetto vs Baseline Share Share vs Baseline
Ethnic (Asian/Hispanic) 38.9 +100% 0.821 +20.9%
Income (High/Low) 5.0 -74% 0.543 -20.1%
Political (Liberal/Conservative) 61.6 +216% 0.928 +36.6%
Race (White/Black) 40.8 +109% 0.823 +21.2%
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